New integer factorizations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix factorizations for reversible integer mapping

Reversible integer mapping is essential for lossless source coding by transformation. A general matrix factorization theory for reversible integer mapping of invertible linear transforms is developed in this paper. Concepts of the integer factor and the elementary reversible matrix (ERM) for integer mapping are introduced, and two forms of ERM—triangular ERM (TERM) and single-row ERM (SERM)—are...

متن کامل

Ela Binary Ranks and Binary Factorizations of Nonnegative Integer Matrices

Abstract. A matrix is binary if each of its entries is either 0 or 1. The binary rank of a nonnegative integer matrix A is the smallest integer b such that A = BC, where B and C are binary matrices, and B has b columns. In this paper, bounds for the binary rank are given, and nonnegative integer matrices that attain the lower bound are characterized. Moreover, binary ranks of nonnegative intege...

متن کامل

A Simple Improvement for Integer Factorizations with Implicit Hints

In this paper, we describe an improvement of integer factorization of k RSA moduli Ni = piqi (1 ≤ i ≤ k) with implicit hints, namely all pi share their t least significant bits. May et al. reduced this problem to finding a shortest (or a relatively short) vector in the lattice of dimension k obtained from a given system of k RSAmoduli, for which they applied Gaussian reduction or the LLL algori...

متن کامل

On the Number of Factorizations of an Integer

Let f(n) be the number of unordered factorizations of a positive integer n as a product of factors > 1. In this paper, we show that the number of distinct values of f(n) below x is at most exp(9(log x)2/3) for all x ≥ 1.

متن کامل

Binary ranks and binary factorizations of nonnegative integer matrices

A matrix is binary if each of its entries is either 0 or 1. The binary rank of a nonnegative integer matrix A is the smallest integer b such that A = BC, where B and C are binary matrices, and B has b columns. In this paper, bounds for the binary rank are given, and nonnegative integer matrices that attain the lower bound are characterized. Moreover, binary ranks of nonnegative integer matrices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1983

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1983-0717713-2